Salvaging Weak Security Bounds for Blockcipher-Based Constructions

نویسندگان

  • Thomas Shrimpton
  • R. Seth Terashima
چکیده

The concrete security bounds for some blockcipher-based constructions sometimes become worrisome or even vacuous; for example, when a light-weight blockcipher is used, when large amounts of data are processed, or when a large number of connections need to be kept secure. Rotating keys helps, but introduces a “hybrid factor” m equal to the number of keys used. In such instances, analysis in the ideal-cipher model (ICM) can give a sharper picture of security, but this heuristic is called into question when cryptanalysis of the real-world blockcipher reveals weak keys, related-key attacks, etc. To address both concerns, we introduce a new analysis model, the idealcipher model under key-oblivious access (ICM-KOA). Like the ICM, the ICM-KOA can give sharp security bounds when standard-model bounds do not. Unlike the ICM, results in the ICM-KOA are less brittle to current and future cryptanalytic results on the blockcipher used to instantiate the ideal cipher. Also, results in the ICM-KOA immediately imply results in the ICM and the standard model, giving multiple viewpoints on a construction with a single effort. The ICM-KOA provides a conceptual bridge between ideal ciphers and tweakable blockciphers (TBC): blockcipher-based constructions secure in the ICM-KOA have TBC-based analogs that are secure under standard-model TBC security assumptions. Finally, the ICM-KOA provides a natural framework for analyzing blockcipher key-update strategies that use the blockcipher to derive the new key. This is done, for example, in the NIST CTR-DRBG and in the hardware RNG that ships on Intel chips.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal-Cipher (Ir)reducibility for Blockcipher-Based Hash Functions

Preneel et al. (Crypto 1993) assessed 64 possible ways to construct a compression function out of a blockcipher. They conjectured that 12 out of these 64 so-called PGV constructions achieve optimal security bounds for collision resistance and preimage resistance. This was proven by Black et al. (Journal of Cryptology, 2010), if one assumes that the blockcipher is ideal. This result, however, do...

متن کامل

Tweakable Blockciphers for Efficient Authenticated Encryptions with Beyond the Birthday-Bound Security

Modular design via a tweakable blockcipher (TBC) offers efficient authenticated encryption (AE) schemes (with associated data) that call a blockcipher once for each data block (of associated data or a plaintext). However, the existing efficient blockcipher-based TBCs are secure up to the birthday bound, where the underlying keyed blockcipher is a secure strong pseudorandom permutation. Existing...

متن کامل

Connecting tweakable and multi-key blockcipher security

The significance of understanding blockcipher security in the multi-key setting is highlighted by the extensive literature on attacks, and how effective key size can be significantly reduced. Nevertheless, little attention has been paid in formally understanding the design of multi-key secure blockciphers. In this work, we formalize the multi-key security of tweakable blockciphers in case of ge...

متن کامل

A Unified Method for Improving PRF Bounds for a Class of Blockcipher Based MACs

This paper provides a unified framework for improving PRF (pseudorandom function) advantages of several popular MACs (message authentication codes) based on a blockcipher modeled as RP (random permutation). In many known MACs, the inputs of the underlying blockcipher are defined to be some deterministic affine functions of previously computed outputs of the blockcipher. Keeping the similarity i...

متن کامل

Blockcipher-Based Authenticated Encryption: How Small Can We Go?

This paper presents a design of authenticated encryption (AE) focusing on minimizing the implementation size, i.e., hardware gates or working memory on software. The scheme is called COFB, for COmbined FeedBack. COFB uses an n-bit blockcipher as the underlying primitive, and relies on the use of a nonce for security. In addition to the state required for executing the underlying blockcipher, CO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016